We explored the effectiveness of docosahexaenoic acid (DHA), particularly when delivered via nanoparticles, in treating liver disease, specifically hepatocellular carcinoma (HCC), in three rodent models. Our focus was on understanding how DHA affects HCC lesions as well as the performance of weighted amide proton transfer (APT) MRI as a monitoring tool.
In all three models—diethylnitrosamine (DEN) induced HCC, N1S1 syngeneic orthotopic xenograft, and human HepG2 ectopic xenograft—the APT MRI revealed higher signals from the cancerous tissue compared to surrounding normal tissue. Notably, in the DEN model, we found that the APT signal could effectively differentiate between malignant lesions and benign nodules.
After administering LDL-DHA nanoparticles directly into tumors, we observed a rapid decrease in APT signals within 72 hours, suggesting a promising therapeutic response. This trend was consistent in both N1S1 and HepG2 xenografts, indicating that DHA's effects, accelerated by nanoparticles, hold potential for therapeutic applications in liver cancer management.
Overall, our findings underscore the utility of APT imaging in the diagnostic and therapeutic landscapes of HCC, showcasing how innovative delivery methods can enhance treatment outcomes.